MA 116 B1 Assignment 2

Due Friday July 11 11:59 pm

Wednesday July 09: In class discussion of Assignment 2.

Question 1

If we flip a fair coin, the probability of heads is p = 50%. We will flip this coin 120 times and let \hat{p} denote the sample proportion of heads observed.

- (a) Describe the sampling distribution of \hat{p} . Namely, find the mean and standard deviation of the sampling distribution of \hat{p} and determine whether this distribution is normal.
- (b) Find $P(\hat{p} < 0.45)$.
- (c) If we flip this fair coin 120 times, there is a 96% chance that $p e \le \hat{p} \le p + e$. Find e.
- Remark 1. Suppose the sampling distribution of \hat{p} is normal with mean $\mu_{\hat{p}}$ and standard deviation $\sigma_{\hat{p}}$. For any $0 < \alpha \le 1$, if you select a sample at random (i.e. flip this fair coin 120 times and observe the sample proportion \hat{p}), there is a 1α probability that \hat{p} lies in the interval

$$(p-z_{\alpha/2}\sigma_{\hat{p}}, p+z_{\alpha/2}\sigma_{\hat{p}}).$$

Exercise: Check this statement is true by applying the change of variable formula. (This question is for practice only and will not be graded.)

Remark 2. Therefore, $(1 - \alpha)100\%$ of the time we repeat this experiment the true parameter p will lie in the interval

$$(\hat{p}-z_{\alpha/2}\sigma_{\hat{p}},\,\hat{p}+z_{\alpha/2}\sigma_{\hat{p}})$$

Question 2

The Graduate Record Examination (GRE) is a test required for admission to many US graduate schools. Students' scores on the quantitative portion of the GRE follow a normal distribution with mean $\mu = 152$ and standard deviation 8.5. Consider the variable \overline{x} of sample means of random samples at n = 16.

- (a) Describe the sampling distribution of \overline{x} . Namely, find the mean and standard deviation of the sampling distribution of \overline{x} and determine whether this distribution is normal.
- (b) Find $P(145 < \overline{x} < 152)$.
- (c) If we obtain a random sample of size 16, there is a 90% chance that $\mu e \leq \overline{x} \leq \mu + e$. Find e.

Question 3

Family income in the US is not normally distributed because a small number of families earn extremely high amounts, creating a right-skewed distribution. Suppose we want to find out the distribution of \bar{x} , sample mean with a sample size n = 100.

- (a) Is \overline{x} approximately normally distributed? Give a brief justification.
- (b) Given population mean $\mu = 97$ thousand dollars and population standard deviation $\sigma = 100$ thousand dollars, find out the probability that a random sample of size 100 has a sample mean less than 77 thousand dollars.

Question 4

Suppose 70% of US citizens in a state voted in the last Federal election. Fix a sample size n = 100 and consider the sample proportion variable \hat{p} .

(a) Is \hat{p} normally distributed? Provide an answer along with a brief explanation of your reasoning.

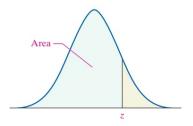
Question 5

A Gallup poll found that 493 of 1050 adult American believe it is the responsibility of the federal government to make sure all Americans have healthcare coverage.

- (a) What is the sample in this study? What is the population of interest?
- (b) What is the variable of interest in this study? Is it qualitative or quantitative?
- (c) Based on the results of this survey, obtain a point estimator for the population of adult Americans who believe it is the responsibility of the federal government to make sure all Americans have healthcare coverage.

- (d) Construct and interpret a 90% confidence interval for the proportion of adult Americans who believe it is the responsibility of the federal government to make sure all Americans have healthcare coverage.
- (e) Suppose the researchers wanted the margin of error for the 90% confidence interval to be within 2%. How large should the sample be? Use the sample statistic you find in Part (c) as a prior estimator.

Question 6


The Graduate Record Examination (GRE) is a test required for admission to many US graduate schools. Students' scores on the quantitative portion of the GRE follow a normal distribution. Suppose a random sample of 10 students took the test, and their scores are given below.

You do not need to show steps in finding \overline{x} and s of this sample.

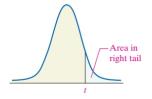

- (a) Find a point estimator of the population mean.
- (b) Construct and interpret a 90% confidence interval for the true mean score for this population.

Table V										
z	0.00	0.01	0.02	Standard 0.03	Normal D 0.04	istribution 0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table V (continued)										
Standard Normal Distribution										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Table V	I												
t-Distribution													
Degrees		Area in Right Tail											
Freedom	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005	
1 2	1.000	1.376	1.963	3.078	6.314	12.706	15.894	31.821	63.657	127.321	318.309	636.619	
	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.089	22.327	31.599	
3 4	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.215	12.924	
	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610	
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869	
6 7	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959	
	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408	
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041	
	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781	
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587	
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437	
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318	
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221	
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140	
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073	
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015	
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965	
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214 2.205	2.552	2.878	3.197	3.610	3.922	
19	0.688	0.861	1.066	1.328	1.729	2.093		2.539	2.861	3.174	3.579	3.883	
20	0.687	0.860	1.064	1.325	1.725	2.093	2.197	2.528	2.845	3.174	3.552	3.850	
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819	
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792	
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768	
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745	
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725	
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707	
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690	
28 29	0.683	0.855 0.854	1.056 1.055	1.313 1.311	1.701 1.699	2.048 2.045	2.154 2.150	2.467 2.462	2.763	3.047 3.038	3.408 3.396	3.674 3.659	
30	0.683 0.683	0.854	1.055	1.311	1.699	2.043	2.130	2.462	2.756 2.750	3.030	3.385	3.646	
31	0.682	0.853	1.054	1.309	1.696	2.040	2.144	2.453	2.744	3.022	3.375	3.633	
32	0.682	0.853	1.054	1.309	1.694	2.037	2.141	2.449	2.738	3.015	3.365	3.622	
33	0.682	0.853	1.053	1.308	1.692	2.035	2.138	2.445	2.733	3.008	3.356	3.611	
34	0.682	0.852	1.052	1.307	1.691	2.032	2.136	2.441	2.728	3.002	3.348	3.601	
35	0.682	0.852	1.052	1.306	1.690	2.030	2.133	2.438	2.724	2.996	3.340	3.591	
36	0.681	0.852	1.052	1.306	1.688	2.028	2.131	2.434	2.719	2.990	3.333	3.582	
37	0.681	0.851	1.051	1.305	1.687	2.026	2.129	2.431	2.715	2.985	3.326	3.574	
38	0.681	0.851	1.051	1.304	1.686	2.024	2.127	2.429	2.712	2.980	3.319	3.566	
39	0.681	0.851	1.050	1.304	1.685	2.023	2.125	2.426	2.708	2.976	3.313	3.558	
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551	
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496	
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460	
70	0.678	0.847	1.044	1.294	1.667	1.994	2.093	2.381	2.648	2.899	3.211	3.435	
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416	
90	0.677	0.846	1.042	1.291	1.662	1.987	2.084	2.368	2.632	2.878	3.183	3.402	
100 1000	0.677	0.845 0.842	1.042 1.037	1.290 1.282	1.660 1.646	1.984 1.962	2.081	2.364 2.330	2.626 2.581	2.871 2.813	3.174 3.098	3.390 3.300	
z	0.675 0.674	0.842	1.037	1.282	1.645	1.962	2.056 2.054	2.326	2.576	2.813	3.098	3.291	

Reference of the standard normal distribution table and the Student's t-distribution table. STATISTICS: Informed Decisions Using Data, Michael Sullivan, 7e.