Formula Sheet

Population mean formula. $\mu = \frac{\sum x_i}{N}$ where the summation is taken over all data points in the population, and N is the population size.

Population variance formula. $\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$ where the summation is taken over all data points in the population, and N is the population size.

Population standard deviation formula. $\sigma = \sqrt{\sigma^2}$.

Sample mean formula. $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$, where n is the sample size.

Sample variance formula. $s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$, where n is the sample size.

Sample standard deviation formula. $s = \sqrt{s^2}$.

Normal distrubution/Bell curve

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-1/2[(x-\mu)/\sigma]^2)$$

Change of Variable formulas.

Given a normal variable x with a mean μ and a standard deviation σ , we may convert it to a standard normal variable z by the formula

$$z = \frac{x - \mu}{\sigma}$$

Then,

$$P(\frac{x-\mu}{\sigma} \le a) = P(x \le a\sigma + \mu)$$

$$P(\frac{x-\mu}{\sigma} \ge a) = P(x \ge a\sigma + \mu)$$

for any number a.

$$P(x \le a) = P(z \le \frac{a - \mu}{\sigma})$$

$$P(x \ge a) = P(z \ge \frac{a - \mu}{\sigma})$$

for any number a.

z_{α} formulas.

- $P(z \ge z_{\alpha}) = \alpha$.
- For any $0 \le \alpha \le 1$ we have $-z_{\alpha} = z_{1-\alpha}$.

Sampling distribution (Ch.8) formulas.

Fix a population and a sample size n. Assume all samplings are random.

Theorem		need $n < 0.05N$?
1	$\mu_{\overline{x}} = \mu \ (\mu \text{ is the mean of the original population})$	NO
2	$\sigma_{\overline{x}} = \sigma/\sqrt{n}$ (σ is the standard deviation of the original population)	YES
3	x being approximately normal implies \overline{x} is approximately normal	NO
4	CLT: $n \ge 30$ implies \overline{x} is approximately normal	YES
5	$\mu_{\hat{p}} = p$	NO
6	$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	YES
7	$np(1-p) \ge 10$ implies \hat{p} is approximately normal	YES

Confidence Interval (Ch.9) formulas.

Interval estimator for population proportion, margin of error formula to a level of confidence $(1 - \alpha)100\%$.

We use $n\hat{p}(1-\hat{p}) \geq 10$, where \hat{p} is the sample proportion of our particular sample, to determine if the variable \hat{p} is approximately normally distributed.

If \hat{p} is approximately normally distributed, we can use

$$E = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

to construct an interval estimator of p.

Determine sample size needed, given α and an error E'.

1. Method 1.

$$n = \tilde{p}(1 - \tilde{p}) \left(\frac{z_{\alpha/2}}{E'}\right)^2$$

rounded up to the next integer, where \tilde{p} is a **prior point estimator** of p.

2. **Method 2.** If we do not have a prior point estimator information,

$$n = 0.25 \left(\frac{z_{\alpha/2}}{E'}\right)^2$$

rounded up to the next integer.

Interval estimator for population mean, margin of error formula to a level of confidence $(1-\alpha)100\%$.

If the variable

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

has a distribution that can be approximated by the Student's t-distribution, we may use

$$E = t_{\alpha/2} \frac{s}{\sqrt{n}}$$

(where $t_{\alpha/2}$ is with n-1 degrees of freedom) to construct a confidence interval of confidence level $(1-\alpha)100\%$ of μ by $[\overline{x}-E, \overline{x}+E]$.

Hypothesis test for a population proportion.

		Reality					
		H ₀ Is True	H₁ Is True				
Conclusion	Do Not Reject H ₀	Correct Conclusion	Type II Error				
	Reject H ₀	Type I Error	Correct Conclusion				

Test statistic formula

$$z_0 = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}},$$

where \hat{p} is the sample mean of the particular sample obtained. This formula can only be used if the variable \hat{p} is normal.

Hypothesis test for a population mean, change of variable to t.

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}.$$

If x is approximately a normal variable, or if n > 30, this variable t follows Student's t-distribution with df = n - 1.

Hypothesis test for two population proportions, independent samples.

If $n\hat{p}_1(1-\hat{p}_1) \geq 10$ and $n\hat{p}_2(1-\hat{p}_2) \geq 10$, then the variable $\hat{p}_1 - \hat{p}_2$ has an approximately normal distribution. We may convert $\hat{p}_1 - \hat{p}_2$ to a standard normal variable via

$$z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

where
$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$
.

Hypothesis test for two population means, matched pair data.

$$d_i = x_i - y_i$$

If d is approximately normally distributed, or if n > 30, then the new variable

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$

follows Student's t-distribution with df = n - 1.

Hypothesis test for two population means, independent samples.

If the two populations are both normally distributed, or if both n_1 and n_2 are > 30, then the new variable

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

approximately follows Student's t-distribution with the smaller of $n_1 - 1$ or $n_2 - 1$ degrees of freedom.

Sample linear correlation coefficient

$$r = \frac{\sum_{i} \left(\frac{(x_i - \overline{x})}{s_x} \frac{(y_i - \overline{y})}{s_y} \right)}{n - 1} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{s_x s_y (n - 1)}$$

Least squares regression line of a sample

$$b_1 = r \cdot \frac{s_y}{s_x}$$
$$b_0 = \overline{y} - b_1 \overline{x}$$
$$\hat{y} = b_0 + b_1 x$$

Inference about β_1

$$s_e = \sqrt{\frac{\sum_i (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{\sum_i \text{residuals}^2}{n-2}}$$

where \sum_{i} residuals² is the sum of square resuduals of a least squares regression line.

$$s_{b_1} = \frac{s_e}{s_x \sqrt{n-1}}$$

Change of variable in a hypothesis test about β_1

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

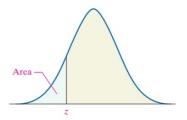
follows Student's t-distribution with n-2 degrees of freedom if the residual plot of the sample has no obvious pattern and the distribution of the error ϵ is assumed to be normal.

Convert a categorical variable to dummy variables

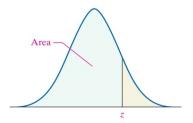
Suppose u is a catagorical variable of k levels: **Level 1** to **Level k**. Picking **Level 1** to be the base level allows the following dummy variables to be defined:

$$x_1 = \begin{cases} 1, & \text{if } u \text{ is at Level 2} \\ 0, & \text{otherwise} \end{cases} \qquad x_2 = \begin{cases} 1, & \text{if } u \text{ is at Level 3} \\ 0, & \text{otherwise} \end{cases} \qquad \cdots \qquad x_{k-1} = \begin{cases} 1, & \text{if } u \text{ is at Level } k \\ 0, & \text{otherwise} \end{cases}$$

Given a least squares prediction equation of a sample whose data points are of the form $(x_1, x_2, ..., x_{k-1}, y)$, where x_i are dummy variables of a categorical variable u of k levels, and y is a quantitative response variable. The lease squares prediction equation of this sample


$$\hat{y} = b_0 + b_1 x_1 + \dots + b_{k-1} x_{k-1}$$

is given by the following formulas.


$$b_0 = \overline{y}_1$$

$$b_i = \overline{y}_{i+1} - \overline{y}_1,$$

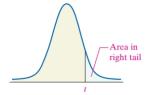

for any $1 \le i \le k-1$, where \overline{y}_i is the mean value of the response variable y when u is at **Level** i.

Table	V									
	0.00	0.01	0.02		Normal Di		0.06	0.07	0.00	0.00
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6 -2.5	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

	e V (<i>conti</i>			Standar	rd Normal l	Distributio	n			
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Table VII												
						Distribut						
Degrees o				0.10		a in Righ						
Freedom	0.25	0.20	0.15	0.10	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1 2	1.000	1.376	1.963	3.078	6.314	12.706	15.894	31.821	63.657	127.321	318.309	636.619
	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.089	22.327	31.599
3 4	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.215	12.924
	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
6	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15 16	0.691	0.866	1.074 1.071	1.341	1.753 1.746	2.131 2.120	2.249 2.235	2.602 2.583	2.947 2.921	3.286 3.252	3.733	4.073 4.015
17 18	0.690 0.689 0.688	0.865 0.863 0.862	1.069 1.067	1.337 1.333 1.330	1.740 1.740 1.734	2.120 2.110 2.101	2.233 2.224 2.214	2.567 2.552	2.898 2.878	3.222 3.197	3.686 3.646 3.610	3.965 3.922
19 20	0.688 0.687	0.861 0.860	1.066 1.064	1.328 1.325	1.729 1.725	2.093 2.086	2.214 2.205 2.197	2.539 2.528	2.861 2.845	3.174 3.153	3.579 3.552	3.883 3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30 31	0.683	0.854	1.055	1.310 1.309	1.697 1.696	2.042	2.147	2.457	2.750 2.744	3.030	3.385 3.375	3.646 3.633
32	0.682	0.853	1.054	1.309	1.694	2.037	2.141	2.449	2.738	3.015	3.365	3.622
33	0.682	0.853	1.053	1.308	1.692	2.035	2.138	2.445	2.733	3.008	3.356	3.611
34	0.682	0.852	1.052	1.307	1.691	2.032	2.136	2.441	2.728	3.002	3.348	3.601
35	0.682	0.852	1.052	1.306	1.690	2.030	2.133	2.438	2.724	2.996	3.340	3.591
36	0.681	0.852	1.052	1.306	1.688	2.028	2.131	2.434	2.719	2.990	3.333	3.582
37	0.681	0.851	1.051	1.305	1.687	2.026	2.129	2.431	2.715	2.985	3.326	3.574
38 39	0.681	0.851	1.051	1.304 1.304	1.686	2.024	2.127 2.127 2.125	2.429	2.712	2.980	3.319 3.313	3.566
40	0.681 0.681	0.851 0.851	1.050 1.050	1.303	1.685 1.684	2.023 2.021	2.123	2.426 2.423	2.708 2.704	2.976 2.971	3.307	3.558 3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
70	0.678	0.847	1.044	1.294	1.667	1.994	2.093	2.381	2.648	2.899	3.211	3.435
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
90	0.677	0.846	1.042	1.291	1.662	1.987	2.084	2.368	2.632	2.878	3.183	3.402
	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
z	0.674	0.842		1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.090	3.291
4.	0.074	0.042	1.050	1.202	1.043	1.700	2.034	2.520	2.570	2.007	5.070	3.271