1 Hypothesis test: classical approach

1.1 Calculating the test statistics

The idea of hypothesis test (classical approach) is to first assume that H_0 holds to get a hypothetical distribution of the variable (let's use \overline{x}) that we are concering about. If a random sample turns out to have a sample statistic \overline{x} that lies near the peak of the hypothetical distribution, then roughly speaking, this sample agrees with H_0 . If a random sample turns out to have a sample statistic \overline{x} that lies in the left and/or right tail(s) (depend on test type), then roughly speaking, under the assumption that H_0 holds, obtaining a random sample like this is unlikely, so we want to use this sample as evidence to reject H_0 .

We make the critical regions rigorous by changing to the distribution of a new variable t, so that we can say critical values are t_{α} , $-t_{\alpha}$, $\pm t_{\alpha/2}$ (depending on test type). The distribution of the new variable t is determined under the assumption that H_0 : $\mu = \mu_0$ holds, so $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$. In this formula, μ_0 and n are numerical values, while \overline{x} , s varies with choice of random sample. To calculate t_0 , we first calculate the sample statistics \overline{x} and s from our particular sample, and plug these two numerical values into $\frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ to get t_0 .

In Quiz 2 Question 5, when calculating the test statistic z_0 , some students used

$$\sigma_{\hat{\rho}} = \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}},$$

where they take \hat{p} to be the sample statistics of our particumar sample. This is not accurate. The correct formula to use is $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$, where p is a numerical value obtained from assuming H_0 holds. There are two things to notice

- 1. The distribution of the new variable z is determined under the assumption that H_0 holds
- 2. Even though we have sometimes used $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ to appriximate $\sqrt{\frac{p(1-p)}{n}}$, we should not use the approximating formula here because we know the value of p from assuming H_0 is true.

Another thing to notice in calculating t_0 is the formula for the sample standard deviation s, which is $\sqrt{\frac{\sum_i (x_i - \overline{x})^2}{n-1}}$. Example: my sample is $\{2, 3, 5\}$. Then the \overline{x} of my sample is $\frac{2+3+5}{3} = 10/3 \approx 3.3$. We calculate s by

$$s = \sqrt{\frac{\sum_{i}(x_i - 3.3)^2}{n - 1}} = ?$$

1.2 Rubric for hypothesis test (classical approach) questions

- 1. Determine H_0 , H_1 , test type (2)
- 2. Verify that the conditions for our variable to have a desired distribution are satisfied. Eg. Variable is \overline{x} , so we need to varify that either the original population is normally distributed, or n > 30, in order for the new variable $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ to follow Student's *t*-distribution of df=n-1. (2) In Quiz 2 Question 5, some students forgot to verify if $np(1-p) \ge 10$.
- 3. Determine the critical value(s). (2)
- 4. Calculate the test statistic and check if the test statistic falls in the critical region. (2)
- 5. Draw conclusion to your hypothesis test. (2) It is wrong to say that there is sufficient evidence to accept H_0 ! You must say **There is/is not sufficient evidence to conclude** [H_1 statement].

Exercise. Find $t_{0.01}$ with df = 20.

2 Quiz 3

2.1 Structure

- 1. Question 1. Hypothesis test about a population mean, classical approach
- 2. Question 2. Hypothesis test about two population proportion-independent sample
- 3. Question 3. Hypothesis test about two population mean-matched pair data
- 4. Question 4. Hypothesis test about two mean-independent sample

2.2 Practice question 1. Hypothesis test about a population mean, classical approach

The average phone screen time of Americans is about 5 hours. We want to know if Americans aged 60 and older has a lower average phone screen time. Suppose we have a random sample of size 36 from Americans aged 60 and older with a sample mean $\overline{x} = 4.1$ and a sample variance s = 2. Conduct a hypothesis test with $\alpha = 0.02$.

2.3 Practice question 2. Hypothesis test about two population proportions, independent samples

A pharmaceutical had developed an updated version of an existing vaccine and wanted to know if the new version offers a higher rate of protection against flu compared to the older version. Researchers conducted two independent randomized trials:

- 1. In the first trial, 400 individuals received the updated vaccine, and 340 of them did not contract the flu.
- 2. In the second trial, 400 individuals received the older version of vaccine, and 330 of them did not contract the flu.

Conduct a hypothesis test at $\alpha = 0.05$ significance.

2.4 Practice question 3. Hypothesis test about two population means, matched pair data

A company wants to test whether a new training program improves employee productivity. To investigate this, a random sample of 5 employees is selected. For each employee, the number of units produced per day is recorded **before** the training and again **after** the training. Let x_i be the number of units produced **before** training, and y_i be the number of units produced **before** training for employee *i*.

- 1. A random sample is {(10, 10.5), (8, 11.2), (3.2, 8.4), (7.5, 15), (15, 24.6)}. Calculate \overline{d} and s_d of this sample.
- 2. Assume *d* is normally distributed. Conduct a hypothesis test at the $\alpha = 0.05$ significance level.

2.5 Practice question 4. Hypothesis test about two population means, independent samples

RMK. Two cases that the new variable *t* follows Student's *t*-distribution with the smaller of $n_1 - 1$, $n_2 - 1$ df: 1. Both populations are normal; 2. Both n_1 , $n_2 > 30$.

We want to know if an experimental drug relieves symptoms attributable to the common cold. Let μ_1 be the mean time until cold go away for anyone who (hypothetically) take the drug. Let μ_2 be the mean time until cold go away for anyone who is not taking this drug. We assume x_1 and x_2 are approximately normal variables.

- 14 individuals with colds are randomly assigned to take the drug (Group 1).
- Another 14 individuals are randomly assigned to take a placebo (Group 2).

Group 1 (Drug): sample mean $\overline{x}_1 = 5.9$ days, sample standard deviation $s_1 = 1.2$ days. **Group 2 (Placebo):** sample mean $\overline{x}_2 = 7.1$ days, sample standard deviation $s_2 = 1.5$ days.

Do a hypothesis test at $\alpha = 0.05$.