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Items marked with *** are important concepts that may be tested on

quizzes or exams.
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Response variable vs. Explanatory variable

Explanatory variable is used to predict the value of the response

variable.

Example. Explanatory variable=the speed at which a golf club is swung;

response variable=the distance the golf ball travels.
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Scatter diagram

Explanatory variable on the horizontal axis, response variable on the

vertical axis.

It is not always clear which variable should be considered the response

variable and which the explanatory variable. For example, does high

school GPA predict a student’s SAT score or can the SAT score predict

GPA? The researcher must determine the role of each variable based on

the question they want to answer.
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Two kinds of linear relations.

(a) shows a linear relation such that the two variables are linearly related

and positively asociated: When the explanatory variable assumes a high

value, the response variable assumes a high value as well. When the

explanatory variable assumes a low value, the response variable assumes

a low value as well.
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Two kinds of linear relations.

(b) shows a linear relation such that the two variables are linearly related

and negatively asociated: When the explanatory variable assumes a high

value, the response variable assumes a low value. When the explanatory

variable assumes a low value, the response variable assumes a high value.
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Are we again dealing with matched pair data?

In a scatter diagram, we are plotting paired data with a data point

denoted by (xi , yi). The term matched pair data is (in this course)
reserved for inference about two means, in which di = xi − yi makes
sense and is what we care about.
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Sample linear correlation coefficient

The sample linear correlation coefficient is a measure of the strength

and direction of the linear relation between two quantitative variables.
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Properties of the sample linear correlation coefficient r.

−1 ≤ r ≤ 1
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Correlation ̸= Causation

If data used in a study are observational, we can not conclude that the

two correlated variables have a casual relationship. A linear correlation

coefficient that implies a strong positive or negative association (i.e. r

close to ±1) does not imply causation if it was computed using
observational data.

Example. As air-conditioning bills increases, so does the crime rate. Can

I argue that folks should turn off their air conditioners so that crime

rates decrease? No. In fact, it is the rising temperature that causes both

the air-conditioning bills and crime rate to increase.
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4.2 Least-Squares Regression

If two variables have a linear relation, we’d like to find a linear equation

that describes this relation.
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Least-Square regression line

***

ŷ = b1x + b0

where b1 = r ·
sy
sx
is the slope of the least equare regression line, and

b0 = y − b1x is the y -intercept of the least squares line. The notation ŷ
is used in the least equare regression line to remind us that is it a

predicted value of y for a given value of x .

Properties of this line.

1 ŷ = b1x + b0 is a mathematical formula that assigns to any number
x a number ŷ . It extends infinitely in both directions. In practice,

the explanatory variable often could assume values within a smaller

range. For example, if I have a linear relation with explanatory

variable number of cups of coffee a student drink per day, then x

can only assume nonnegative integers, despite the fact that ŷ has a

value −0.5b1 + b0 at x = −0.5.
2 The line ŷ = b1x + b0 always passes through the point (x , y).
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Example.

*** Consider the data given in the table. Compute the linear correlation

coefficient r and then the least equare regression line.

First compute x , sx , y , sy , since the formula for the linear

correlation coefficient r is

r =

∑
i

(
xi − x
sx

)(
yi − y
sy

)
n − 1
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*** Consider the data given in the table. Compute the linear correlation

coefficient r and then the least equare regression line. We

find that x = 4, sx = 2.4, y = 10, sy = 5.6. Then, note that

r =

∑
i

(
xi − x
sx

)(
yi − y
sy

)
n − 1 =

1

(n − 1)sxsy

∑
i

(xi − x)(yi − y).

From this we get r ≈ −0.9.
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*** Consider the data given in the table. Compute the linear correlation

coefficient r and then the least equare regression line. We

find that x = 4, sx = 2.45, y = 10, sy = 5.61, r = −0.946. Then

b1 = r ·
sy
sx

= −2.1676

and

b0 = y − b1x = 18.67.

So our least equare regression line is

ŷ = −2.1676x + 18.67
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Interpret the slope

Given that the least equare regression line for a sample data set with

explanatory variable=the speed at which a golf club is swung; response

variable=the distance the golf ball travels is

ŷ = 3.166x + 55.797.

How do we interpret this slope 3.166?

There are two interpretations.

1 If club-head speed increases by 1 mile per hour, the expected

distance the golf ball will travel increases by 3.166 yards.

2 If club-head speed increases by 1 mile per hour, the distance the golf

ball travel increases by 3.166 yards, on average.
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Residual

*** Suppose I have a least equare regression line ŷ = b1x + b0 for a
sample. For each data point (xi , yi) in my sample, its residual is yi − ŷ ,
where the ŷ is its value at xi (i.e. b1xi + b0).

Residule is defined for other line

Given another line f (x) = a0x + a1 we can also consider the residual of a
data point (xi , yi) with respect to this line, that is, yi − f (xi).

Result

Fix a sample with data points like (xi , yi). For any line we can consider
the sum of squared residual of this sample

∑
i(yi − f (xi))2. The least

equare regression line of a sample, by design, always have the least sum

of squared residual of this sample, among all possible lines of the form

f (x) = a0x + a1.
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Goodness of slope interpretation?

Given that the least equare regression line for a sample data set with

explanatory variable=the speed at which a golf club is swung; response

variable=the distance the golf ball travels is

ŷ = 3.166x + 55.797.

Suppose a club-head speed is 103 mph. The least equare regression line

predicts that the distance of the shot to be

ŷ = 3.166 · 103− 55.78 = 270.3 yards.

How good is this prediction? In other words, we want to figure out

how good the least equare regression line describes how changes in the

explanatory variable affect the value of the response variable.
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To answer this question, let’s dedfine a new quantity

Coefficient of determination R2

Consider the response variable y and its variation s2y . Due to the

existance of a linear relation between x and y , it makes sense to say that

part of σ2y is explained by the least equare regression line. It can be

shown that (although beyond the scope of this course)

s2y =
∑
i

(yi − y)2 =
∑
i

(yi − ŷ)2 +
∑
i

(ŷ − y)2,

where s2y =
∑
i(yi − y)2 is the total deviation,

∑
i(yi − ŷ)2 is called the

unexplained deviation, and
∑
i(ŷ − y)2 is called the explained deviation

(note in this context ŷ = b1xi + b0 is the ŷ value at each xi). Define

R2 =

∑
i(ŷ − y)2

s2y
= 1−

∑
i(yi − ŷ)2

s2y

***
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Coefficient of determination R2

R2 is
explained variation

total variation
. It is the proportion of total variation in the

response variable that is explained by the least-squares regression line.

1 We always have that 0 ≤ R2 ≤ 1.
2 The closer R2 is to 1, the better the least-squares regression line

describes the relation between the explanatory and response

variables.

***
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Note the unexpected variation
∑
i(yi − ŷ)2 is just the sum of squared

residule. The smaller the sum of squared residule of a sample {(xi , yi)}
and its least-squares regression line is, the larger R2 will be (i.e. closer to

1).
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Example.

1 Compute the least-squares regression line.

2 Predict the well-being index of a person whose commute is 30

minutes.
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Example.

1 Suppose Barbara has a 20-minute commute and scores 67.333 on

the survey. Is Barbara more “well-off” than the typical individual

who has a 20-minute commute?

2 Compute R2.
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