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Review: 14.1

@ Population and sample with paired data points (x;, ;)

© Such a sample gives a least-square regression equation
¥ = byx + bg, in which b; and by are statistics.

© The corresponding population parameters are G and Gg

Q y = [Bi1x+ Bo is the true linear relation

© For a a number that the explanary variable x can reasonably assume,
muy,, is the population mean of response variable y when x = a.

@ To conduct inference on the least squares regression line (e.g. do
hypothesis test about (1), we require two conditions to be met:
o Condition 1. It is reasonable to say x and y are linearly relate.
Equivalently, There are fixed numbers G; and By such that
Uy|x = B1x + Bo is approximately true for any value of x. If the
residual plot has no pattern, then we say Condition 1 is met.
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Review: 14.1

(1 ] e Condition 2. For any fixed value of x, the response variable y is

@ Hypothesis test about B1: Using new variable t =

approximately normally distributed with mean w,,, = B1x + Bo and
standard deviation o, a fixed value that does not depend on value of

x. (Need to know or be able to approximate this value.)
@ To check Condition 2, we introduce the least-squares regression

model

Yi = Wy|x, — € = B1xi +Bo — €,
where €; is a random error term with mean 0 and standard deviation
O, =0
If €; is normally distributed with mean O and standard deviation ¢ that
we can approximate, then Consition 2 is met. Indeed, we are able to

032

use Se = Z‘(ny'ig/') to approximate o. In this class, we make an
additional assumption that ¢; is normally distributed. Then Condition
2 follows directly from this additional assumption.

b1 — B1
Sb1 .
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Predicted value

Given a sample we can obtain a least squares regression line

¥ = bix + bg. At any numerical value of x, the corresponding numerical
value y = bix + bg is called the predicted value of the response varaible
for a given value of x with respect to this particular least squares
regression line.

Two interpretations about the predicted value
@ It estimates the mean of all response variable values at this x value

@ It estimates the predicted y value for a randomly selected individual
from the population at this x value.

Since the predicted value y has these two different interpretations, there
are two different interval estimators that both centered at . The
interval estimator that estimates u, |, is called a confidence intervals
for a mean response. The interval estimator that estimates the y value
from a random selected data point (x, y) from the population is called a
prediction interval for an individual response.
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Despite the fact that both use the predicted value of the response

¥ = bix + by as a point estimator, prediction interval for an individual
response often needs to have a larger margin of error compared to
confidence intervals for a mean response.

Suppose a family doctor is interested in examining the relationship
between a patient’s age and total cholesterol level (in mg/dL). In this
setting, our explanatory variable is x=age, and response variable is
y=cholesterol level (in mg/dL). Population=all American people. i3,
is the population mean of cholesterol level (in mg/dL) of all Americans
of age 32. Suppose this doctor calculate an interval estimator

[198.8, 224, 4] to estimate w3, from a sample. However, given a
randomly selected Americans of age 32, can we say their cholesterol level
is between 198.8 and 224.4 mg/dL? NO! This is way too restricted.

For the second scenario, we use prediction interval for an individual
response. ***Calculating intervals will not be tested, but
concepts/definitions may be tested.
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Confidence intervals for a mean response

Assume the sample size is large enough and Condition 1 and 2 are met.
Fix a numerical value x
@ Population parameter to be estimated: Wy|x Where x is a numerical
value
@ Point estimator (center of our interval) y = byx + by, a numerical
value calculated from a least squares regression line obtained from a
sample
@ Confidence level (1 — a)100%

: 1 (x — x)?
Q Margin of error E =ty 5 - Se\/n + m

e In this formula, x is a fixed numerical value.
o > /(xi —X)? is just the sum of square of this least squares regression

line
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Prediction intervals for an individual response

Assume the sample size is large enough and Condition 1 and 2 are met.
Fix a numerical value x

@ Quantity to be estimated: The y value of a randomly selected (x, y)
from population.

@ Point estimator (center of our interval) y = byx + by, a numerical
value calculated from a least squares regression line obtained from a
sample

© Confidence level (1 — a)100%

(x —%)?

2i(xi = X)?

e In this formula, x is a fixed numerical value.

o > ;(xi —X)? is just the sum of square of this least squares regression
line

e This formula gives a larger E than the previous margin of error
formula for wy .

1
© Margin of error E = t45 - se\/l + . +
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Review: Hypothesis test about (3,

We want to answer the following question: Do the sample data provide sufficient evidence to conclude thata
linear relation exists between the two variables? If there is no linear relation between the response and
explanatory variables, the slope of the true regression line will be zero. Do you know why? A slope of zero means
that information about the explanatory variable, x, does not change our estimate of the value of the response

variable, y.

@ the null hypothesis Hg : 81 = 0 means there is no linear relation
between the explanatory and response variables.

@ the alternative hypothesis Hy : B1 # 0 means there is linear relation
between the explanatory and response variables.

© the alternative hypothesis H; : 81 > 0 means there is linear relation
between the explanatory and response variables that is positively
associated.

@ the alternative hypothesis H; : 81 > 0 means there is linear relation
between the explanatory and response variables that is negatively
associated.
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Example of hypothesis test about 3;

Suppose we want to test if temperature (explanary variable) is in linear
relation to garlic leaves growing speed (response variable).

Xi | Vi
50 | 1
60 | 3 | The table shows a sample we get.
70| 3
80| 3

Q Step |. Calculate X, y, sx and s,.
@ Step II. Calculate r.
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Example of hypothesis test about 3;

Suppose we want to test if temperature (explanary variable) is in linear
relation to garlic leaves growing speed (response variable), to a
significance level @ = 0.05. Before we determine Hy and Hy, we first
calculate all the values that might be used in our hypothesis test.

Xi | Vi
50 | 1
60 | 3 | The table shows a sample we get.
70 | 3
80 | 3

Q Stepl. Xx=065y=25 s5=129and s, =1.
225—-25+25+75 30
@ Stepll. r = i + =

129-1-3 3873 01>
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Q Stepl. Xx=065y=25, 5=129and s, =1.
225-25425+4+75 30

© Stepll. r= 129-1-3 ~ 3573 0>
@ Calculate S
b1 = I’l
Se
and
bo =y — b1 x.
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Q Stepl. Xx=065y=25 5=129and s, =1.
225-254+254+75 30

129-1-3 3873 0>

@ Stepll. r =
o

by = r2 =0.06
Se
and

bp =y — bix=—-1.4.

Therefore, the least squares regression line we obtained from this
sample is
y=0.06x — 1.4.
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Q@ Stepl. Xx=65,y =255 =129and s, = 1.
225—-25+25+75 30
© Stepll. r= 12.0-1-3 ~ 3873
© Step lll. § =0.06x — 1.4,

@ Step IV. Calculate the residues and draw a residual plot for this least
X; ¥, = 0.06x; — 1.4 | residual
50
squares regression line.| 60
70
80

= 0.775.

W ww R
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©0 ©0 O

Stepl. x =65y =25, 5 =129 and s, = 1.
225-25+25+75 30
. r= = = 0.775.

Step Il r 129-1-3 373 07

Step lll. y = 0.06x — 1.4.

Step IV. Calculate the residues and draw a residual plot for this least
Xi | Vi ),7,' = 0.06x; — 1.4 residual
50 | 1 1.6 -0.6

squares regression line| 60 | 3 2.2 0.8 Since
70| 3 2.8 0.2
80| 3 3.4 -0.4

the sample data points seem to scatter around the zero line in the
residual plot without a pattern, we say that a linear relationship
between x and y is reasonable.
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Q Stepl. Xx=065y=25 s5=129and s, =1.
225-254+25+75 30

Q Stepll. r = 159.1.3 _38.7320'775'
© Step lll. y =0.06x — 1.4.

Xi | vi | ¥i =0.06x; — 1.4 | residual

50 | 1 1.6 -0.6
Q Step V.| 60| 3 2.2 0.8

70| 3 2.8 0.2

80| 3 3.4 -0.4

© Step V. Calculate

> = 9i)? >, residual®
Se = =
n—2 n—2

Se

b = (v/n—1)sx

and
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Q Stepl. Xx=065y=25 s5=129and s, = 1.
225-25+4+25+75 30

. r= = = 0.775.
© Stepll. v 129-1-3 38.73
© Step lll. y =0.06x — 1.4.

Xi | vi | ¥i =0.06x; — 1.4 | residual

50 | 1 1.6 -0.6
©Q Step V.| 60| 3 2.2 0.8

70 | 3 2.8 0.2

80| 3 3.4 -0.4
@ Step V.

i 9)? [ Yresidual®? 1.2
Se_\/ 2 N a2 “V2 7o
Se
Sp, = ————— = 0.034.
P (V= 1)«
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Q Stepl. Xx=065y=25 s5=129and s, = 1.
225-25+4+25+75 30

Q Stepll. r = 159.1.3 _38.7320'775'
© Step lll. y =0.06x — 1.4.
Xi | vi | ¥i =0.06x; — 1.4 | residual
50 | 1 1.6 0.6
Q StepIV.| 60 | 3 2.2 0.8
70| 3 2.8 0.2
80| 3 3.4 -0.4
(i — 9)? residual® 1.2
@ Step V. 5, — [ 2V =) [ residual” 12 oo
n—2 n—2 2
S = ——° 0034
T (Wn=1)s.

@ Step VI. Hypothesis test. Hy, H1 : B1 # 0, test type. Critical
value(s). Calculate test statistic. Conclusion.
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