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Review: 14.1

1 Population and sample with paired data points (xi , yi)

2 Such a sample gives a least-square regression equation

ŷ = b1x + b0, in which b1 and b0 are statistics.

3 The corresponding population parameters are β1 and β0
4 y = β1x + β0 is the true linear relation

5 For a a number that the explanary variable x can reasonably assume,

muy |a is the population mean of response variable y when x = a.

6 To conduct inference on the least squares regression line (e.g. do
hypothesis test about β1), we require two conditions to be met:

Condition 1. It is reasonable to say x and y are linearly relate.

Equivalently, There are fixed numbers β1 and β0 such that

µy |x = β1x + β0 is approximately true for any value of x . If the
residual plot has no pattern, then we say Condition 1 is met.
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Review: 14.1

1 Condition 2. For any fixed value of x , the response variable y is

approximately normally distributed with mean µy |x = β1x + β0 and
standard deviation σ, a fixed value that does not depend on value of

x . (Need to know or be able to approximate this value.)
To check Condition 2, we introduce the least-squares regression

model

yi = µy |xi − ϵi = β1xi + β0 − ϵi ,
where ϵi is a random error term with mean 0 and standard deviation

σϵi = σ
If ϵi is normally distributed with mean 0 and standard deviation σ that

we can approximate, then Consition 2 is met. Indeed, we are able to

use se =

√∑
i(yi − ŷi)

2

n − 2 to approximate σ. In this class, we make an

additional assumption that ϵi is normally distributed. Then Condition

2 follows directly from this additional assumption.

2 Hypothesis test about β1: Using new variable t =
b1 − β1
sb1

.
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Predicted value

Given a sample we can obtain a least squares regression line

ŷ = b1x + b0. At any numerical value of x , the corresponding numerical
value ŷ = b1x + b0 is called the predicted value of the response varaible
for a given value of x with respect to this particular least squares

regression line.

Two interpretations about the predicted value

1 It estimates the mean of all response variable values at this x value

2 It estimates the predicted y value for a randomly selected individual

from the population at this x value.

Since the predicted value ŷ has these two different interpretations, there

are two different interval estimators that both centered at ŷ . The

interval estimator that estimates µy |x is called a confidence intervals

for a mean response. The interval estimator that estimates the y value

from a random selected data point (x , y) from the population is called a
prediction interval for an individual response.
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Despite the fact that both use the predicted value of the response

ŷ = b1x + b0 as a point estimator, prediction interval for an individual
response often needs to have a larger margin of error compared to

confidence intervals for a mean response.

Suppose a family doctor is interested in examining the relationship

between a patient’s age and total cholesterol level (in mg/dL). In this

setting, our explanatory variable is x=age, and response variable is

y=cholesterol level (in mg/dL). Population=all American people. µy |32
is the population mean of cholesterol level (in mg/dL) of all Americans

of age 32. Suppose this doctor calculate an interval estimator

[198.8, 224, 4] to estimate µy |32 from a sample. However, given a
randomly selected Americans of age 32, can we say their cholesterol level

is between 198.8 and 224.4 mg/dL? NO! This is way too restricted.

For the second scenario, we use prediction interval for an individual

response. ***Calculating intervals will not be tested, but

concepts/definitions may be tested.
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Confidence intervals for a mean response

Assume the sample size is large enough and Condition 1 and 2 are met.

Fix a numerical value x

1 Population parameter to be estimated: µy |x where x is a numerical

value

2 Point estimator (center of our interval) ŷ = b1x + b0, a numerical
value calculated from a least squares regression line obtained from a

sample

3 Confidence level (1− α)100%

4 Margin of error E = tα/2 · se

√
1

n
+

(x − x)2∑
i(xi − x)2

In this formula, x is a fixed numerical value.∑
i (xi − x)2 is just the sum of square of this least squares regression

line
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Prediction intervals for an individual response

Assume the sample size is large enough and Condition 1 and 2 are met.

Fix a numerical value x

1 Quantity to be estimated: The y value of a randomly selected (x , y)
from population.

2 Point estimator (center of our interval) ŷ = b1x + b0, a numerical
value calculated from a least squares regression line obtained from a

sample

3 Confidence level (1− α)100%

4 Margin of error E = tα/2 · se

√
1+
1

n
+

(x − x)2∑
i(xi − x)2

In this formula, x is a fixed numerical value.∑
i (xi − x)2 is just the sum of square of this least squares regression

line

This formula gives a larger E than the previous margin of error

formula for µy |x .
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Review: Hypothesis test about β1

1 the null hypothesis H0 : β1 = 0 means there is no linear relation
between the explanatory and response variables.

2 the alternative hypothesis H1 : β1 ̸= 0 means there is linear relation
between the explanatory and response variables.

3 the alternative hypothesis H1 : β1 > 0 means there is linear relation
between the explanatory and response variables that is positively

associated.
4 the alternative hypothesis H1 : β1 > 0 means there is linear relation
between the explanatory and response variables that is negatively

associated.
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Example of hypothesis test about β1

Suppose we want to test if temperature (explanary variable) is in linear

relation to garlic leaves growing speed (response variable).

xi yi
50 1

60 3

70 3

80 3

The table shows a sample we get.

1 Step I. Calculate x , y , sx and sy .

2 Step II. Calculate r .
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Example of hypothesis test about β1

Suppose we want to test if temperature (explanary variable) is in linear

relation to garlic leaves growing speed (response variable), to a

significance level α = 0.05. Before we determine H0 and H1, we first
calculate all the values that might be used in our hypothesis test.
xi yi
50 1

60 3

70 3

80 3

The table shows a sample we get.

1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Calculate

b1 = r
sy
sx

and

b0 = y − b1x .
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3

b1 = r
sy
sx

= 0.06

and

b0 = y − b1x = −1.4.

Therefore, the least squares regression line we obtained from this

sample is

ŷ = 0.06x − 1.4.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.
4 Step IV. Calculate the residues and draw a residual plot for this least

squares regression line.

xi yi ŷi = 0.06xi − 1.4 residual

50 1

60 3

70 3

80 3
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.
4 Step IV. Calculate the residues and draw a residual plot for this least

squares regression line.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

Since

the sample data points seem to scatter around the zero line in the

residual plot without a pattern, we say that a linear relationship

between x and y is reasonable.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.

4 Step IV.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

5 Step V. Calculate

se =

√∑
i(yi − ŷi)2

n − 2 =

√∑
i residual

2

n − 2

and

sb1 =
se

(
√
n − 1)sx

.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.

4 Step IV.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

5 Step V.

se =

√∑
i(yi − ŷi)2

n − 2 =

√∑
i residual

2

n − 2 =

√
1.2

2
= 0.77,

sb1 =
se

(
√
n − 1)sx

= 0.034.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.

4 Step IV.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

5 Step V. se =

√∑
i(yi − ŷi)2

n − 2 =

√∑
i residual

2

n − 2 =

√
1.2

2
= 0.77,

sb1 =
se

(
√
n − 1)sx

= 0.034.

6 Step VI. Hypothesis test. H0, H1 : β1 ̸= 0, test type. Critical
value(s). Calculate test statistic. Conclusion.
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