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Attendance policy

OLD

UPDATED

You are allowed to miss up to 3

regular lectures and still get full

attendance credits. May 30, Jun 3,

23, 24, 26 are not considered

regular lectures.

#Regular lectures=17

If fewer than 14 lectures are

attended, you get 1.6%× n
attendance credits where n=number

of regular lectures attended.
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Quiz 4 and Final Exam

Quiz 4: two questions

Question 1: Given a sample of

small size, calculate x , y , sx , sy , r .

Find the lease squares regression

line of this sample. Draw a residual

plot. Deduct from the residual plot

that a linear relation between x and

y is reasonable. Conduct a

hypothesis test to test whether

there is a (positively/negatively

associated) linear relation between

the response variable and the

explanatory variable.

Question 2: Short answer question

about estimators in 14.1 and 14.2

Final Exam: June 26 3-5pm (two

hours)

Covers Quiz 1-4 content and

multiple regression + qualitative

(dummy) variable.

Reminder

You have to score at least 30% on

the final exam to pass this course

A calculator that’s able to

compute square roots is required

for Quiz 4 and the final exam.
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Review: 14.2

Confidence interval for a mean response vs. prediction interval for an

individual response. [diagram]

What are the point estimator for both interval estimators?

What is the quantity that we want to estimate, if we are using a

(confidence interval for a mean response/prediction interval for an

individual response)?

Fix a value of x , which interval has a larger length?
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Example. Review 14.1: Hypothesis test about β1

1 the null hypothesis H0 : β1 = 0 means there is no linear relation
between the explanatory and response variables.

2 the alternative hypothesis H1 : β1 ̸= 0 means there is linear relation
between the explanatory and response variables.

3 the alternative hypothesis H1 : β1 > 0 means there is linear relation
between the explanatory and response variables that is positively

associated.
4 the alternative hypothesis H1 : β1 > 0 means there is linear relation
between the explanatory and response variables that is negatively

associated.
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Example of hypothesis test about β1

Suppose we want to test if temperature (explanary variable) is in linear

relation to garlic leaves growing speed (response variable).

xi yi
50 1

60 3

70 3

80 3

The table shows a sample we get.

1 Step I. Calculate x , y , sx and sy .

2 Step II. Calculate r .
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Example of hypothesis test about β1

Suppose we want to test if temperature (explanary variable) is in linear

relation to garlic leaves growing speed (response variable), to a

significance level α = 0.05. Before we determine H0 and H1, we first
calculate all the values that might be used in our hypothesis test.
xi yi
50 1

60 3

70 3

80 3

The table shows a sample we get.

1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Calculate

b1 = r
sy
sx

and

b0 = y − b1x .
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3

b1 = r
sy
sx

= 0.06

and

b0 = y − b1x = −1.4.

Therefore, the least squares regression line we obtained from this

sample is

ŷ = 0.06x − 1.4.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.
4 Step IV. Calculate the residues yi − ŷi and draw a residual plot for
this least squares regression

line.

xi yi ŷi = 0.06xi − 1.4 residual

50 1

60 3

70 3

80 3
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.
4 Step IV. Calculate the residues and draw a residual plot for this least

squares regression line.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

Since

the sample data points seem to scatter around the zero line in the

residual plot without a pattern, we say that a linear relationship

between x and y is reasonable.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.

4 Step IV.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

5 Step V. Calculate

se =

√∑
i(yi − ŷi)2

n − 2 =

√∑
i residual

2

n − 2

and

sb1 =
se

(
√
n − 1)sx

.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.

4 Step IV.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

5 Step V.

se =

√∑
i(yi − ŷi)2

n − 2 =

√∑
i residual

2

n − 2 =

√
1.2

2
= 0.77,

sb1 =
se

(
√
n − 1)sx

= 0.034.
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1 Step I. x = 65, y = 2.5, sx = 12.9 and sy = 1.

2 Step II. r =
22.5− 2.5+ 2.5+ 7.5

12.9 · 1 · 3 =
30

38.73
= 0.775.

3 Step III. ŷ = 0.06x − 1.4.

4 Step IV.

xi yi ŷi = 0.06xi − 1.4 residual

50 1 1.6 -0.6

60 3 2.2 0.8

70 3 2.8 0.2

80 3 3.4 -0.4

5 Step V. se =

√∑
i(yi − ŷi)2

n − 2 =

√∑
i residual

2

n − 2 =

√
1.2

2
= 0.77,

sb1 =
se

(
√
n − 1)sx

= 0.034.

6 Step VI. Hypothesis test. H0, H1 : β1 ̸= 0, test type. Critical
value(s). Calculate test statistic. Conclusion.
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Suppose we want to test if temperature (explanary variable) is in linear

relation to garlic leaf growing speed (response variable) at α = 0.05.

H0 : β1 = 0, H1 : β1 ̸= 0. Two-tailed test.
Assume that H0 is true. Since we have verified that a linear relation

between x and y is reasonable by looking at the residual plot, we further

assume that ϵi is normally distributed so that the new variable

t =
b1 − β1
sb1

follows Student’s t-distribution with df = n − 2 = 2.
My critical values are ±t0.025 = ±4.303 at df = 2.
My test statistic is t0 =

b1 − β1
sb1

=
0.06− 0
0.034

= 1.76, which does not fall

in the critical region.

Conclusion: There is not sufficient evidence to conclude that there is a

linear relation between temperature and garlic leaf growing speed.
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14.2 Example 1

A real estate analyst wants to predict the selling price of houses

(denoted by y , response variable) based on their size (in square feet)

(denoted by x , explanatory variable). In particular, the real estate analyst

wants to estimate the average selling price of houses that are about 1500

sq ft. The real estate analyst has a sample that consisting of data points

of the form (xi , yi), where xi varies discretely between 300 and 3500.

1 Suppose this real estate analyst wants to obtain a point estimator of

the average selling price of houses that are about 1500 sq ft from

the sample they have. Describe the steps of calculation.

2 To obtain an interval estimator of the average selling price of houses

that are about 1500 sq ft, the real estate analyst would calculate a

confidence interval for a mean response. If, instead of a confidence

interval for a mean response, the real estate analyst calculates a

prediction interval for an individual response, what quantity is

being estimated?
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Multiple linear regression: quantitative data

Multiple linear regression equation

y = β0 + β1x1 + β2x2 + · · ·+ βkxk
where y is called the dependent variable, x1, ..., xk are the independent

variables. (Not to be confused with data points xi !)

Like the simple linear regression case, β1, ..., βk are population

parameters. From a sample, one may use technologies or more advanced

math tools (linear algebra, not covered in this course) to obtain a least

squares prediction equation

ŷ = b0 + b1x1 + · · ·+ bkxk .

(I.e. from a sample, the technology/math tool used calculates bi for

0 ≤ i ≤ k with the intention of finding a linear relation that minimizes
sum of square residuals.)
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Example

A collector of antique grandfather clocks sold at auction believes that

the price received for the clocks depends linearly on both the age of the

clocks and the number of bidders at the auction. Thus, he hypothesizes

a model y = β0 + β1x1 + β2x2 where y=Auction proce (dollars), x1=Age
of clock (years), x2=Number of bidders.

A sample of 32 auction prices of grandfather clocks, along with their age

and the number of bidders, is collected.
index Age x1 Number of bidders x2 Auction Price y

1 127 13 1235

2 115 12 1080

3 127 7 845
...

...
...

...

32 18 7 1262
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A statistician uses technology to find out that the least squares

prediction equation of this sample is

ŷ = −1339+ 12.74x1 + 85.95x2.

This is equivalent to say that this statistician finds that

b0 = −1339, b1 = 12.74, and b2 = 85.95 for this sample. b0 is a point
estimator for β0, b1 is a point estimator for β1, b2 is a point estimator

for β2.

Interpret βi
For a multiple linear regression equation

µy = β0 + β1x1 + β2x2 + · · ·+ βkxk , β1 represents the slope of the line
relating y to x1 for fixed x2, ..., xk . That is, β1 measures the change in

µy for every one unit increase in x1 when the other independent variables

in the model are held fixed. A similar statement can be made about

βi , i ≥ 1.
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In this example, we interpret b1 = 12.74 by the following statement.

We estimate the mean auction price µy of an antique clock to increase

$12.74 for every 1-year increase in age x1 when the number of bidders x2
is held fixed.

We can say this because b1 is a point estimator of β1.
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Example.

Suppose we are given the least squares prediction equation of this

sample, ŷ = −1339+ 12.74x1 + 85.95x2.
1 Predict the auction price of a grandfather clock if it is of an age 150

years, and there are 10 bidders at the auction.

2 A collector owns a grandfather clock of age 150 years. Suppose this

collector wants to make at least $1500 from the auction of this
clock. Predict the smallest number of bidders for the collector to

achieve this amount. (Round up to the next integer!)
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Hypothesis test about βi , i > 0

Consider the multiple linear regression model

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ.

If the random error ϵ obeys the following four assumptions, then we may

make inference about βi , i > 0. [these assumptions will not be tested;

take it for granted]

1 Random errors are independent

2 It has a mean=0

3 It has a variance equal to σ2, the variance of y

4 It is a normal variable

If the random error ϵ obeys these four assumptions, the new variable

t =
bi − βi
sbi

follows Student’s t-distribution with df = n − (k + 1).
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Example

In the setting of our previous example, test the hypothesis that the mean

auction price of a clock increases as the number of bidders increases

when the age is held constant, at α = 0.05. Given that sb2 = 8.729.

H0 : β2 = 0, H1 : β2 > 0. Right-tailed test.
Assume that H0 is true. The new variable

t =
b2 − β2
sb2

=
b2
8.729

follows the Student’s t-distribution with

df = n − (k + 1) = 32− (2+ 1) = 29.
The critical value is t0.05 with df = 29, which is 1.699.

The test statistic is t0 =
85.95

8.729
= 9.85, which falls in the critical region.

Conclusion: There is sufficient evidence to conclude that the mean

auction price of a clock increases as the number of bidders increases

when the age is held constant.
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Qualitative (Dummy) Variable Models

A researcher wants to model how age associates to whether an American

voted or not in the last federal election. In particular, this researcher

wants to investigate if the average age of Americans who did not vote is

larger than the average age of Americans who voted.

In this set-up, age is a quantitative data, but voted or not is a

qualitative/categorical data.

Recall–we may use inference about two population means,

independent samples, to test if the average age of Americans who

did not vote is larger than the average age of Americans who voted.

I.e., if µ1 > µ2.

What if the researcher wants to investigate whether the average age

differs across voters of different political parties? In this setting,

different political parties is a categorical data with more than two

categories, so we can no longer use inference about two population

means.

MA 116 Rest of Chapter 14 June 2025 24 / 34



Let’s first introduce another set-up for hypothesis test that tests if the

average age of Americans who did not vote is larger than the average

age of Americans who voted. We attempt to roughly let “voted or not”

be the explanatory variable, and age be the response variable.

In this setting, categorical independent variable with two levels is a

variable u that either takes a value “voted” or “did not vote”.

Consider a dummy variable x which assumes 0 if the random individual

voted (i.e. u=“voted”), and 1 if not (i.e. u=“did not vote”). Then x is

a quantitative variable. u=“voted” is called the base level.

Now, a data point like (1, 32) represents an American who did not vote
in the last federal election and is 32 years old. A data point like (0, 64)
represents an American who voted in the last federal election and is 64

years old.

Consider a line model y = β0 + β1x such that β0 is defined to be the
mean for base level, in this example, the average age of Americans who

voted, and β1 is defined to be the mean for level assigned “1” minus

mean for base level.

A hypothesis test may be conducted with H0 : β1 = 0 and H1 : β1 > 0.
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Only concepts and H0, H1 of this kind of hypothesis test are testable.

The process of conducting this hypothesis test will not be tested.

More generally, we can consider a categorical random variable u with k

levels. Let µi , 1 ≤ i ≤ k represents the mean value of the response
variable y for level i . Choose level 1 to be the base level. Define dummy

variables xi for 1 ≤ i ≤ k − 1 such that xi assumes value 1 if u is at level
i + 1, and xi assumes value 0 otherwise. This gives us k − 1 dummy
variables x1, ..., xk−1.

Consider a linear model

y = β0 + β1x1 + ...+ βk−1xk−1

such that β0 = µ1, βi = µi+1 − µ1 for 1 ≤ i ≤ k − 1. Such a relation
gives µj = β0 + βj−1 for 2 ≤ j ≤ k .
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If we have a sample in which data points are of the form (u, y), we may
change to dummy variables to get a sample in which data points are of

the form (x1, ..., xk−1, y), for example (1, 0, ..., 0, 36) or (0, 1, 0, ..., 3).

Note that in such a data point, at most one dummy variable xi can

assume 1.

Now we have a quantitative sample data set in which data points are

k-tuples. We may consider the lease squares prediction equation (least

squares regression line) of this sample, i.e., the line

ŷ = b0 + b1x1 + · · ·+ bk−1xk−1

that minimizes the sum of square residuals.

The technologies or math tools that are able to find the lease squares

prediction equation in the previous section can be directly applied to this

sample. Why?
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Theorem

Given a quantitative sample data set in which data points are of the form

(x1, ..., xk−1, y) where xi are dummy variables, the line that minimizes
sum of square residuals ŷ = b0 + b1x1 + · · ·+ bk−1xk−1 (i.e. the least
squares regression line) is given by:

b0 is the sample mean at the base level (b0 = y1)

b1 is the sample mean at level 2 minus the sample mean at the base

level (b1 = y2 − y1)
· · ·
bk−1 is the sample mean at level k minus the sample mean at the

base level (bk−1 = y k − y1)

This theorem is a mathematical consequence of the lease squares

regression line of dummy variables that can only assume 0 or 1.

Therefore, we have two equivalent definitions of the least square

regression line ŷ = b0 + b1x1 + · · ·+ bk−1xk−1 of dummy variables.
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RMK.

We are choosing level 1 to be the base level

For any i > 0, bi is a sample statistic that estimates βi = µi+1 − µ1.

Test of hypothesis: H0 and H1
We may want to test whether the mean value of y is the same across all

levels of the categorical variable u, i.e. µ1 = µ2 = · · · = µk? This is
equivalent to testing

H0 : β1 = β2 = · · · = βk−1 = 0

H1 : at least one of βi differs from 0
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Example

USGA wants to compare the mean driving distances of four different golf

ball brands (A, B, C, and D). A robot golfer hits a sample of 3 balls from

each brand to get the following sample.
index A B C D

1 251.2 263.2 269.7 251.6

2 245.1 262.9 263.2 248.6

3 248.0 265.0 277.5 249.4
Then our categorical variable u can assume A, B, C, D. We choose level

A to be the base level and define dummy variables x1, x2, x3 by the

following rules.

x1 =

{
1, if u = B

0, if not
x2 =

{
1, if u = C

0, if not
x3 =

{
1, if u = D

0, if not
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We propose a hypothetical model

y = β0 + β1x1 + β2x2 + β3x3,

in which β0 represents the mean driving distance for golf balls of Brand A

(i.e. β0 = µA); β1 = µB − µA, β1 = µC − µA, β3 = µD − µA.

We may again use technologies or more advanced math tools to find

b0, b1, b2, b3 from our sample using least squares regression. This

process is called fitting sample data points to a (proposed,

hypothetical) model.

However, by our theorem, we can find the least squares regression line

ŷ = b0 + b1x1 + b2x2 + b3x3 of this sample by hand.
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index A B C D

1 251.2 263.2 269.7 251.6

2 245.1 262.9 263.2 248.6

3 248.0 265.0 277.5 249.4

Sample point examples

(A,251.2)→ (0,0,0,251.2)
(C,263.2) → (0,1,0,263.2)

We calculate yA = 248.1, yB = 263.7, yC = 270.13, yD = 249.87.
Then b0 = yA = 248.1.
b1 = yB − yA = 15.6, b2 = yC − yA = 22.03, b3 = yD − yA = 1.77.

The least squares regression line is

ŷ = 248.1+ 15.6x1 + 22.03x2 + 1.77x3.
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Question

Suppose USGA wants to compare the mean driving distances of four

different golf ball brands (A, B, C, and D). A robot golfer hits a sample

of 30 balls from each brand to get a sample of size 30× 4 = 120. A
statistician then finds a line ŷ = 249− 4x1 + 12x2 + 2x3 that minimizes
sum of square residuals for this sample.

1 What is the sample mean of driving distances of the 30 Brand A

balls?

2 What is the sample mean of driving distances of the 30 Brand C

balls?

MA 116 Rest of Chapter 14 June 2025 33 / 34



Reference

The following examples are from Statistics, by McClave and Sincich,

13th edition, page 658, 700.

A collector of antique grandfather clocks sold at auction believes that

the price received for the clocks depends linearly on both the age of the

clocks and the number of bidders at the auction. Thus, he hypothesizes

a model y = β0 + β1x1 + β2x2 where y=Auction price (dollars), x1=Age
of clock (years), x2=Number of bidders.

Example

USGA wants to compare the mean driving distances of four different golf

ball brands (A, B, C, and D). A robot golfer hits a sample of 10 balls

from each brand to get the following sample.
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